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Renormalization group recursion formulas for classical O(N) spin models in
two dimensions are obtained. The main part of the recursion formulas is solved
and yields the flows which are very close to those of the hierarchical model
approximations of Dyson–Wilson type. Spontaneous mass generations also take
place under our approximation.
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1. INTRODUCTION

Though spontaneous mass generations in 2D non-Abelian sigma models
are widely believed, (17, 19) we still do not have a rigorous proof. This
problem is very much related to the long-standing problem of quark con-
finement in 4 dimensional (4D) non-Abelian lattice gauge theories. These
models exhibit no phase transitions in the hierarchical model approxima-
tion of Wilson–Dyson type or Migdal–Kadanov type. (11)

One of main difficulties in these models is that the field variables form
compact manifolds and the block spin transformations break the structures. In
some cases, this can be avoided by introducing an auxiliary fieldk.(1, 2)Using this
idea, together with the help of the cluster expansion,(3, 10, 18)we showed(14) that

bc

N
\ const logN (1.1)

in the 2D O(N) sigma model, where b−1c is the critical temperature.



In this paper, we apply the exact block-spin transformation to the
functional integral of the system, and extract the main part of the renor-
malization recursion formulas. Though the control of small non-local
marginal terms are left to the future, (13) we show in this paper that

Main Theorem. (i) The main part of the renormalization group
recursion formulas reproduces the renormalization group flow of the hier-
archical model of Dyson–Wilson type, (4, 19) rather than that of Gallavotti
type. (6, 9)

(ii) The recursion formulas converge to a massive state no matter how
low the initial temperature is.

The recursion relations are derived by applying the standard block spin
transformation of Wilson–Kadanoff type (19) to the O(N) spin model (with
large N) rewritten by the auxiliary field k. The block spin transformation
was first formulated in a mathematically rigorous way by Gawedzki and
Kupiainen, (7) and we will use it in this paper.
To appeal to the 1/N expansion, (16) we scale the inverse temperature b

by N. (Nb is denoted simply b or bc in (1.1).) The n dimensional O(N) spin
(Heisenberg) model at the inverse temperature Nb is defined by the Gibbs
expectation values

OfP —
1

ZL(b)
F f(f) exp[−HL(f)]D

i
d(f2i −Nb) dfi (1.2)

Here

L=[−(L/2)M, (L/2)M )n … Zn

is the large square with center at the origin, where L is chosen odd (e.g.,
L=3) andM is a large integer. Moreover f(x)=(f(x)(1),..., f(x) (N)) is the
vector valued spin at x ¥ L, ZL is the partition function defined so that
O1P=1. The HamiltonianHL is given by

HL — −
1
2 C
|x−y|1=1

f(x) f(y) (1.3)

where |x|1=;n
i=1 |xi |.

First substitute the identity d(f2−Nb)=> exp[−ia(f2−Nb)] da/2p
into Eq. (1.2) with the condition that Im ai < − n. (1, 2)We set

Im ai=−1n+
m2

2
2 , Re ai=

1

`N
ki (1.4)
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where m > 0 will be determined soon. Thus we have

ZL=c |L| F · · ·F exp 5−
1
2
7f, 1m2−D+

2i

`N
k2 f8

+C
j
i`N bkj6D

dfj dkj
2p

=c |L| det(m2−D)−N/2 F · · ·F F(k)D
dkj
2p

(1.5)

where c’s are constants being different on lines, Dij=−2ndij+d|i− j|, 1 is the
lattice Laplacian and

F(k)=det 11+2iG
`N

k2
−N/2

exp 5i`N b C
j

kj6 (1.6)

Moreover G=(m2−D)−1 is the covariant matrix discussed later. In the
same way, the two-point function is given by

Of0fxP=
1
Z̃
F · · ·F 1m2−D+

2i

`N
k2

−1

0x
F(k)D

dkj
2p

(1.7)

where the constant Z̃ is chosen so that Of20P=Nb. We choose the mass
parameter m > 0 so that G(0)=b, where

G(x)=F
e ipx

m2+2; (1− cos pi)
D
n

i=1

dpi
2p

(1.8)

This is possible for any b if n [ 2, and we easily find that

m2 ’ 32e−4pb for n=2 (1.9)

as b Q., which is consistent with the renormalizaiton group analysis, see
e.g., ref. 5 and references cited therein:

m2=32 1e
1−p/2

8
2
−2
N−2

C 11+ 1
N−2
2 5 2pb

1−2/N
6

2
N−2

exp 5− 4pb

1−2/N
6 (1.10)

Thus for n=2, we can rewrite

F(k)=det−N/23
11+2iG

`N
k2 exp[−Tr(Gk)2] (1.11)

det3(1+A) — det[(1+A) e−A+A
2/2] (1.12)
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and the determinant det3(1+2iGk/`N)−N/2 is regarded as a small per-
turbation to theGaussianmeasure ’ exp[−Tr(Gk)2]< dk. NamelyF(k)=
det−N/22 (1+2iGk/`N) looks like det−N/4(1+4GkGk/N) which is strictly
positive. If F(k) \ 0 is justified, then from Eq. (1.7), we have

Of0fxP=
1
Z̃
F · · ·F 1m2−D+

2i

`N
k2

−1

0x
F(k)D

dkj
2p

(1.13)

[ : sup
k

1m2−D+
2i

`N
k2

−1

0x

:

[ (m2−D)−10x [ c1 exp(−c2m |x|) (1.14)

where ci > 0 are suitable constants. Namely the (approximate) positivity
of the subtracted determinant F(k) ensures exponential clustering of the
correlation functions.
This argument fails, however, for large b since the expansion of the

determinant cannot be justified anymore if |k| > e−4pbN1/2 (note that ||G||=
m−2 ’ e4pb) and we cannot expect the approximate positivity of the sub-
tracted determinant F(k). But this argument still works if the main con-
tribution of the k integral comes from small k region (say |k|°`N b−1/2

since G(x, y) ’ b for |x−y| < m−1). If so, we can expand the determinant,
and the approximate positivity of F(k) and exponential clustering of the
correlation functions remain to hold.
This scenario, of course, crucially depends on properties of the

measure

dn=const. F(k)D dk(x) (1.15)

To study the properties of F(k), we decompose the determinant into a
product of many determinants which are expandable and easy to analyze.
The block spin transformation is most convenient for this purpose, and we
can confirm our conjecture by applying the block spin transformation to
the system.
The most important point in this approach is that we must regard the

auxiliary field k as a marginal field operator since [G°2]−1(x, y) ’ |x−y|−4

where G°2(x, y)=G(x, y)2 so that Tr(Gk)2=Ok, G°2kP. This justifies that
we can neglect the subtract determinants at almost all levels of the block
spin transformations. A technically important theorem is Theorem 4 in
Section 3 which gives > k(x) k(y) dn (’ [G°2](x, y)) through the multiscale
decompositions (block-spin transformations) of k. This theorem shows
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that the two-point correlation function of the fluctuation field k̃n of k at
the distance scale Ln is given approximately by (bn+1Cn)−1, where Cn is the
covariant matrix (propagator) of the fluctuation field tn of the block
spin fn and bn+1 is the effective inverse temperature at the distance scale Ln+1.
The following is a non-rigorous summary of our results from technical point
of view:

Theorem. The auxiliary field k is a marginal field operator. As a
result, the effect of det−N/23 (1+2iGk/`N) in F(k) is small no matter how
large b is, namely

dn ’ const. exp[−Ok, G°2kP]D dk(x) (1.16)

Moreover the two-point function >k(x) k(y) dn is represented by a linear
combination of the covariances of the fluctuation fields k̃n, and

F k(x) k(y) dn ’ const.
1

b(x, y) |x−y|4
’
1
G°2
(x, y) (1.17)

for |x−y| < m−1 where b(x, y) ’ b−(2p)−1 log(|x−y|).

This paper is the first part of the realization of this scenario: we
extract the main part of the the block spin transformation and show that
the renormalization group flow moves along our scenario.
We organize the paper as follows: In Section 2, we introduce our block

spin transformation applied to the system and obtain the first and the
second recursion relations. Section 3 is the most technical part in this
paper: we obtain the recursion formulas for general n through our simpli-
fications which will be justified, and we solve it. In Section 4, we obtain
the effective interaction Vn and the inverse temperature bn at the distance
scale Ln. Some conclusions are given in the final Section 5. In the Appendices,
we establish some properties of the Green functions used in the paper.

2. DERIVATION OF THE BST OF THE O(N) SPIN MODEL

2.1. The BST of the O(N) Spin Model

To realize our scenario sketched in the introduction, we decompose
the determinant into product of determinants each of which comes from
the integration over the fluctuation field of f. Namely we decompose L=
[−(L/2)M, (L/2)M)2 … Z2 into blocks (squares) ii of size L×L (with L
around 3 or 4), and repeat the following steps:
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(1) integrate over the fluctuation fields t(x)

(2) integrate over k(x) keeping the block sums fixed,

(3) collect the resultant terms so that the original form would be
recovered with small change of coefficients.

If there are blocks ii where k takes a large value which prohibits the
expansion of the determinant, we will use an a priori estimate. The small
field region is a collection of squares on which the expansion of the deter-
minant converges absolutely.
We now set

W0(f, k)=
1
2
Of, G−10 fP−i C

x
J0(x) k(x) (2.1)

J0=`N b−
1

`N
f2(x)=−

1

`N
:f2(x):G0 (2.2)

G−10 =−D+m2 (2.3)

where :A:G0 is the Wick product of A with respect to the Gaussian measure
of dmG0 with mean zero and covariance G0.
For the reader who may not be familiar with the block spin transfor-

mations formulated in a mathematically rigorous way, we just sketch how
to define block spins and fluctuation fields so that they are independent.
We want to represent original spins f(x) — f0(x) and k(x) — k0(x) by the
block spin variables f1(x)=(Cf)(x) and k1(x)=(CŒk)(x), and by the
fluctuation fields t(z) and k̃(z), z ¥ L−LL1 where

(Cf)(x) — L−2 C
z ¥i

f(Lx+z) (2.4)

(CŒk)(x) — L2(Ck)(x)= C
z ¥i

k(Lx+z) (2.5)

Ln=Z2 5 L−nL, n=1, 2,... (2.6)

and i is the box of size L×L center at the origin. The operator C takes
the arithmetic averages of f over the blocks, the operator CŒ takes sum of
k over the blocks, and the both subsequently reduce the coordinates by
1/L. We do not introduce any scaling factor in the definition of the block
spins kn+1(x)=; z ¥i kn(Lx+z). The reason for this is that the auxiliary
field {k(x)} interacts anti-ferromagnetically (k appears as exp[−Tr(Gk)2]).
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Remark 1. In general, C and CŒ are chosen so that G and [G°2]−1

are left invariant by C and CŒ, respectively:

(CGC+)(x, y) ’ G(x, y), (CŒ[G°2]−1 CŒ+)(x, y) ’ [G°2]−1 (x, y) (2.7)

It is easy to check that our C and CŒ satisfy these requirements since
G(x, y) ’ b−(2p)−1 log(|x−y|) and [G°2]−1 (x, y) ’ |x−y|−4. (We can
show [G°2]−1 (x, y) ’ b−1 |x−y|−4 by the Fourier transformation, see
Appendix.)

The fluctuation fields t0(z) and k̃(z) are living on L−LL1 and the
block spin f1(x) has the covariance

G1(x, y)=CGC+(x, y)=L−4 C
z1, z2 ¥i

G0(Lx+z1, Ly+z2) (2.8)

where G0=G. Similarly we define

Gn(x, y)=CGn−1C+(x, y)=L−4 C
z1, z2 ¥i

Gn−1(Lx+z1, Ly+z2) (2.9)

An(x, y)=Gn−1C+G
−1
n (x, y)=C

z

Gn−1(x, z)[C+G
−1
n ](z, y) (2.10)

We introduce a map Q: RL0LL1 Q RL and its adjoint Q+: RLQ RL0LL1:

(Qt)(x)=˛
t(x) if x ¨ LZ2

− C
y ¥i(x)

t(y) if x ¥ LZ2
(2.11)

(Q+f)(x)=f(x)−f(x0), x ¥ L0LL1 (2.12)

where x0 ¥ LL1 is the nearest point to x. NamelyQ+acts as a differentiation.
The substitution fn(x)=An+1fn+1+Qtn (n=0, 1,...) decomposes the

Gaussian measure dmGn into the product of two Gaussian measures dmGn+1
and dmCn :

dmGn (fn)=dmGn+1 (fn+1) dmCn (tn) (2.13)

since

Ofn, G
−1
n fnP=Ofn+1, G

−1
n+1fn+1P+Otn, C

−1
n tnP (2.14)

C−1
n =Q

+G−1n Q (2.15)

Renormalization Group Recursion Formulas 827



The point is that Cn decays exponentially fast uniformly in n (cŒ=O(1/L)
is a positive constant):

|Cn(x, y)| [ O(1) e−cŒ |x−y|, x, y ¥ Ln 0LLn+1 (2.16)

Thus we have the recursion relations

jn(x)=jn+1(x)+zn, n=0, 1,... (2.17)

where

jn=Anfn, zn=AnQtn, An=A1A2 · · ·An=G0(C+)n G
−1
n (2.18)

and we putA0=A0=1. Therefore

1
N

F jn(x) jn(y) dmGn — Gn(x, y)=AnGnA
+
n (x, y) (2.19)

1
N

F zn(x) zy(y) dmGn —Tn(x, y)=AnQCnQ+A
+
n (x, y) (2.20)

where x, y ¥ L. We list their properties (see ref. 7 or Appendix for the
proof):

Lemma 1. The following bounds hold:

|An(z, x)| [ O(1) exp 5−c :
z

Ln
−x :6 (2.21a)

|An(z, x)−An(t, x)| [ O(1)
|z−t|
Ln
1exp 5−c : z

Ln
−x :6

+exp 5−c : t
Ln
−x :62 (2.21b)

|Tn(x, y)| [ O(1) exp 5−
c
Ln+1

|x−y|6 (2.21c)

|Tn(x, y)−Tn(xŒ, y)| [ O(1)
|x−xŒ|
Ln
1exp 5− c

Ln+1
|x−y|6

+exp 5− c
Ln+1

|xŒ−y|62 (2.21d)
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where z, t ¥ L, x, y ¥ Ln, in the first two equations and x, xŒ, y ¥ L in the
last two equations. The positive constants c’s are chosen independent of L.

2.2. The First Block Spin Transformation

What kind of the decompositions kn=Ãn+1kn+1+Qk̃n is most
appropriate for the auxiliary field k? We will see that {Ãn+1kn+1, k̃n} are
inevitably chosen to (approximately) factorize the Gaussian measure

exp[−Tr(Gk)2]D dk=exp[−Ok, G°2kP]D dk (2.22)

as in the case of dmG. Here for given matrices A and B, the Hadamard
product of A and B is given by (A p B)(x, y) — A(x, y) B(x, y) and we put
A°2=A p A. In fact G0°2=G1°2+(G0°2−G1°2), (G=G0), and we will see that
G0°2−G1°2 is obtained as the Hamiltonian of k by the integrations over t0.
Thus the integrations by the fluctuations tn yield a natural multiscale
decomposition G°2=; n (Gn°2−G°2n+1).
Let us see explicitly how this program works for n=1. Substitute

f0(x)=(A1f1)(x)+(Qt0)(x) and k(x)=(Ã1k1)(x)+Qk̃(x) into F0(f0,
k0) — exp[−W0(f0, k0)], and integrate over {t0(x), k̃0(x); x ¥ L0LL1}:

F1(f1, k1)=F F0(A1f1+Qt0, Ã1k1+Qk̃)D dt0(x)D dk̃(x) (2.23)

where {k̃x; x ¥ L0LL1} is the fluctuation field of k0 and the matrix Ã1 will
be determined later. The integral of (2.23) over t0 is carried out and we
have

F exp 5−1
2
{Of1, G

−1
1 f1P+Ot0, Q+G

−1
0 Qt0P}−

2i

`N
C
x
j0(x) t0(x)

+i`N C
x

1b− 1
N
[j1(x)2+(Qt0)

2
x]2 k(x)6D dt0(x)

=det−N/23
11+ 2i

`N
C0Q+kQ2

× exp 5−1
2
Of1, G

−1
1 f1P+i`N C

x

1b−QC0Q+−
1
N

j21(x)2 k(x)

−7k, 5(QC0Q+)°2+
2
N
1Q 1
P
Q+2 p (j1j1)6 k86 (2.24)
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except for the trivial constant, where j1(x)=(A1f1)(x), (x ¥ L), C0=
[Q+(−D+m2) Q]−1 and

P — Q+ 1−D+m2+
2i

`N
k2 Q=C−1

0 +
2i

`N
Q+kQ (2.25)

j0(x)=C
z

j1(z) Q(z, x) k(z)=[Q+(j1 ·k)](x) (2.26)

Both C0 and P−1 are maps from RL0LL1 into itself. Note that P−1 exhibits
uniform exponential decay (P−1 ’ C0) and that no matter how small m2 is,
C1 has the mass of order (m2+L−2)1/2, and the determinant has uniform
locality.
We define the small field of k(x) by

: 2
`N

C0Q+kQ : <N−e (2.27)

uniformly in b > 0. Since C0 is a bounded operator, this requirement is
equivalent to

|(Q+kQ)ij |=|kidij+kxd[i/L], [j/L] | < Nd, d < 12 (2.28)

where i, j ¥ L0LL1, [i/L] stands for the point ¥ Z2 nearest to (i1/L,
i2/L) and x is the point ¥ LL1 nearest to i=(i1, i2). Therefore

|(Q+kQ)ij | < Nd if and only if |k(x)| < Nd for all x in the block (2.29)

But this constraint does not seem to play an important role if b is large
(we need N \ 3 for the integrability of the determinant) since |k(x)| <
const. b−1/2 is required for the factor exp[−Ok, G°2kP] small. This seems
to a benefit of the block-spin transformation, see refs. 14 and 15.
In the small field region, we may neglect det−N/23 ( · · · ) and we consider

the effective interaction term of k given in the final exponential of
Eq. (2.24):

exp 5− 1
2 Of1, G

−1
1 f1P−Ok, Ĥ−10 kP+i C J1(x) k(x)6 (2.30)

where

Ĥ−10 =(QC0Q+)°2+
2
N
51Q 1

P
Q+2 p (j1 ·j1)6 (2.31)
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J1(x)=`N b−`N (QC0Q+)(x, x)−
1

`N
(j1)

2
x

=`N (G0C+G
−1
1 CG0)(x, x)−

1

`N
(G0C+G

−1
1 f1)

2
x

=−
1

`N
:j21(x):G1 (2.32)

and : :G1 denotes the Wick product with respect to the Gaussian measure
dmG1 ,

:ji(x) jj(y):G1 — ji(x) jj(y)−dij(A1G1A
+
1 )(x, y)

:j1 ·j1 :G1 (x, y) —C
i
:j1, i(x) j1, i(y):G1

and we have used QC0Q+=G0−G0C+G
−1
1 CG0 and A1=G0C

+G−11 .
We extract the main part H̃−10 from Ĥ

−1
0 by replacing j1(x) j1(y) by

NG1(x, y):

Ĥ−10 — H̃−10 +dH−10 (2.33)

H̃−10 —T0°2+2T0 p G1=G0°2−G1°2 (2.34)

dH−10 =
2
N
[T0 p :j1 ·j1 :G1]+

2
N
51Q 1 1

P
−C0 2 Q+2 p (j1 ·j1)6 (2.35)

where :j1(x) j1(y):G1 — j1(x) j1(y)−NG1(x, y) and we have set

T0=QC0Q+, G0=A
+
0 G0A0=G0, G1=A

+
1 G1A1 (2.36)

so that T0=G0−G1. The relation (2.34) is what we have claimed in the
beginning of this section. Therefore to decompose the Hamiltonian H̃−10 ,
we should put

Ã1=H̃0(CŒ)+H
−1
1 , H1=CŒH̃0(CŒ)+ (2.37)

To calculate Ã1 and H1, let P0 (resp. P1) be the projection operator
onto the set of the block-wise constant functions {k1([x/L])} (resp. to the
set of the zero-average functions {Qt}):

P0=
1
L2
R 1 · · · 1x x

1 · · · 1

S , P1=1−P0 (2.38)
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Then we have

P0T0P0=0, P1T0P1 > O(1) (2.39)

Since G1(x, y) ’ b is slowly varying for |x−y| < m−1 and C0(x, y) is rapidly
decreasing in |x−y|, we see that

|T0(x, y)[G1(x, y)−b1] | [ const. exp(−c |x−y|) (2.40)

where b1 — G0(Lx, Lx) and c=O(1/L) > 0 uniformly in b. Therefore

(T0 p G1)(x, y)=b1T0(x, y)+T0(x, y)[G1(x, y)−b1]

’ b1T0(x, y) (2.41)

Put M —M0=H̃
−1
0 , Mij=PiMPj and H̃ij=PiH̃0Pj so that M0=

{Mij} and H̃0={H̃ij}. Then we see that

M00 — P0MP0 ’ P0T0°2

M11 — P1MP1 ’ 2b1P1T0P1=O(b1)
(2.42)

are strictly positive operators of short range. To see that M10 is O(1) uni-
formly in b, we remark thatM10 is given by

M10=P1[T0°2+2T0 p (G1−b1)] P0 (2.43)

since b1T0P0=0, where (T0 p (G1−b1))(x, y) is bounded by exp(−c |x−y]),
c=O(1/L) uniformly in b.
Since H̃0={H̃ij} is given by

H̃00=[M00−M01M
−1
11M10]−1, H̃01=−M

−1
00M01H̃11 (2.44)

H̃11=[M11−M10M
−1
00M01]−1, H̃10=−M

−1
11M10H̃00 (2.45)

we have (see Appendix B for more precise arguments)

Ã1=H̃0(CŒ)+ [CŒH̃0(CŒ)+]−1=C+−M
−1
11M10C+ (2.46)

H1=CŒH̃00CŒ+=L4C[M00−M01M
−1
11M10]−1 C+ (2.47)

where C is the block spin operator defined before:

C(x, y)=
1
L2

dx, [y/L], C+(x, y)=
1
L2

d[x/L], y
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We can calculate −M−1
11M10C+ in Ã1 easily. In fact M11(x, y)=

(1−P0) M(1−P0)=Q+MQ on QRL0LL1, and then we have

M−1
11 (x, y)=(Q

+MQ)−1 ’ (2b1Q+QC0Q+Q)−1 (2.48)

=
1
2b1
(Q+Q)−1 [Q+(−D+m2) Q](Q+Q)−1 (2.49)

on QRL0LL1, where (Q+Q)−1: RL0LL1 Q RL0LL1 is given by

(Q+Q)−1=1−P+
1
L2

P

with P being the projection onto the set of the block-wise (iLx 0{Lx})
constant functions. To rewrite this as the map from QRL0LL1 into QRL0LL1,
we multiply Q to the left and Q+ to the right. Finally we note that
;y Gn(x, y) are independent of x, which means that ;y M(x, y) is inde-
pendent of x. Therefore ;y ¥ L1 (M10C+)(x, y)=0 and we obtain

Lemma 2. For large b ± L, Ã1 is almost diagonal and has no tail,
that is

Ã1(x, y)=
1
L2

d[xL], y+
1
b1

dÃ1(x, y), x ¥ L, y ¥ L1 (2.50a)

dÃ1(x, y)=O(e−O(1) |x/L−y|) (2.50b)

where

C
z ¥i

dÃ1(Lx1+z, y)=0, C
y ¥ L1

dÃ1(x, y)=0 (2.51)

Moreover H̃1 is a strictly positive operator of order O(1) of short range:

H−11 (x, y)=
1
L4

C
z, t ¥i

M−1
0 (Lx+z, Ly+t)

’
1
L4

C
z, t ¥i

(QC0Q+)°2 (Lx+z, Ly+t) ’ dxy, x, y ¥ L1
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Remark 2. Thus both A1(x, y) and Ã1(x, y) decrease exponentially
fast. This is the case for all n. Then one may put

fn(x) ’ fn+1 15
x
L
62+(Qtn)(x)

kn(x) ’
1
L2

kn+1 15
x
L
62+(Qk̃n)(x)

Thus fpn(x), kpn(x) (p > 1) and f2n(x) kn(x) are relevant, irrelevant and
marginal, respectively.

Therefore the following set K1 of the smooth-small field seems to
dominate the functional integral (the condition (2.52a) may be stronger
than necessary, see ref. 13.Kn will be defined in the same way):

Definition 1. The smooth-small field K1(X) is the subset of
{f1(x), k1(x); x ¥ L1} such that

| |j1(x)|−`NG1(x, x)| <
N e

`b
(2.52a)

|j1(x+em)−j1(x)| < N1/2+e (2.52b)

|k1(x)| < Na (2.52c)

|(Ã1k1)(x+em)−(Ã1k1)(x)| <
N e

`b
(2.52d)

for all x ¥X, where 0 < a < 1/2 and 0 < e < a are small positive constants.

Remark 3. Note that the constraint (2.52a) means that

|:f21(x):|=(|f1(x)|+`Nb|) | |f1(x)|−`Nb| [ const.N1/2+e (2.53)

This also means that the fluctuation parallel with f1 is very small, which is
the feature seen in the hierarchical model of Dyson–Wilson type with
large N. Moreover the definition of K1 means that P0dH

−1
0 P0 and

P1dH
−1
0 P1 are sufficiently small onK1.

We now have to integrate over k. We note that k is again Gaussian
random variable of mean zero and covariance 12 (H

−1
0 +dH−10 )

−1. But dH−10
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is small compared with H−10 on the both subsets of k . Then we treat dH−10
by perturbation choosing N large. Since

Ok, Ĥ−10 kP=Ok, H̃−10 kP+Ok, dH−10 kP (2.54)

Ok, H̃−10 kP+i C J0(x) k(x)=Ok1, H
−1
1 k1P+iOJ1, Ã1k1P

+Ok̃, Q+H̃−10 Qk̃P+iOQ+J1, k̃P (2.55)

if f1 ¥K1, we can integrate over k̃ and obtain the new factor

det−1/2(Q+H̃−10 Q) exp[−F1]

whereF1 is a small quantity (per unit volume onK1) given by

F1 — C
x, y
f1(x, y)(Q+ :j

2
1 :G1 )(x)(Q

+ :j21 :G1 )(y) (2.56)

f1(x, y) —
1
4N
[Q+H̃−10 Q]

−1
xy (2.57)

Thus we obtain

exp[−W1(f1, k1)]=exp[−
1
2 Of1, G

−1
1 f1P−Ok1, H

−1
1 k1P

+iOJ1, Ã1k1P−F1+dW1] (2.58)

where dW1 is the remainder (i.e., remaining part of the determinant and so
on). This should be compared with the 0th order integrand exp[−W0], see
Eq. (2.1). Thus the approximate flow is represented by

J0=−
1

`N
:f20(x):G0 Q J1=−

1

`N
:j21(x):G1 (2.59)

H−10 =0QH
−1
1 =(CŒH̃0(CŒ)

+)−1 (2.60)

or simply by the conventional flow of bk : b0=b Q b1=b−T0(x, x).

2.3. The Second Block Spin Transformation

Assuming again that we are on the small smooth field K2, we can
repeat the integrations over t1 and k̃1. The positive polynomial F1 may be
regarded as a fraction of l(:j20 :)

2, (l Q.). In this paper, we neglect F1
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which yields a small renormalization effect of order O(N−1). (13) In this case,
we just repeat the previous calculations: we put

f1=A2f2+Qt1 (2.61)

j1=j2(x)+z1 —A2f2+A1Qt1 (2.62)

where A2=G1C+G
−1
2 , A1=A1 and A2=A1A2. Thus j21(x)=j22(x)+

2j2(x) z1(x)+z
2
1(x) and we have

exp [− 12 Of1, G
−1
1 f1P]=exp [−

1
2 Of2, G

−1
2 f2P−

1
2 Ot1, C

−1
1 t1P] (2.63)

Terms containing z1=A1Qt1 are

exp 5−1
2
Ot1, C

−1
1 t1P−

i

`N
C
x
(2j2(x) z1(x)

+z21(x))(Ã1k1)(x)+dW1(z, j)6

=exp 5−1
2
Ot1, P1t1P−

2i

`N
C
x
j1(x) t1(x)+dW1(z, j)6 (2.64)

where

P1=C−1
1 +

2i

`N
Q+A+1 (Ã1k1) A1Q

(Q+A+1 (Ã1k1) A1Q)xy=C
z

(A1Q)xz (A1Q)yz (Ã1k1)(z)

j1(x)=C
z

j2(z)(A1Q)(z, x)(Ã1k1)(z)

=[Q+A+1 (j2Ã1k1)](x)

and dW1 is the collection of higher order terms.
Then the integration over t1 yields the following main integrand:

det−N/2 11+ 2i

`N
t+1 (Ã1k1) t1 2 exp 5−

2
N
7 j1,

1
P1
j186
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where t1 — A1QC1/2
1 (since C1 > 0). We expand the determinant up to the

second order and extract the k21 term from Oj1, P
−1
1 j1P by replacing j2j2 by

NG2:

2
N
7 j1,

1
P1
j18=

2
N

OÃ1k1, [T1 p (j2 ·j2)] Ã1k1P+O(N−2)

=2OÃ1k1, [T1 p G2] Ã1k1P

+
2
N

OÃ1k1, [T1 p :j2 ·j2 :] Ã1k1P+O(N−2)

where T1=A1QC1Q+A
+
1 and G2=A2G2A

+
2 . We thus finally integrate over

k̃1 defined by k1=Ã2k2+Qk̃1. Omitting again dH−11 , we see that the final
integrand is given by

exp 5i`N 71b−T0−T1−
1
N

j22 2 , Ã1k18−Ok1, H̃
−1
1 k1P6 (2.65)

where, as we have claimed,

H̃−11 =H
−1
1 +Ã

+
1M1Ã1, M1=T1°2+2T1 p G2=G1°2−G2°2 (2.66)

We thus put

Ã2=H̃1(CŒ)+H
−1
2 , H2=CŒH̃1(CŒ)+ (2.67)

to decompose H̃−11 and obtain the next order integrand

exp[iOJ2, Ã2k2P−Ok2, H
−1
2 k2P+iOJ2, Ã1Qk̃1P−Ok̃1, Q+H̃

−1
1 Qk̃1P]

(2.68)

where we have set Ã2 — Ã1Ã2 and

J2=−
1

`N
[j22(x)−(b−T0−T1)]=−

1

`N
:j22(x):G2 (2.69)

Thus we have b2=b−T0(x, x)−T1(x, x) and if f2 ¥K2, we can carry out
the integral over k̃1 and obtain the new factor

det−1/2(Q+H̃−11 Q) exp[−F2]
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where

F2 — C
x, y
f2(x, y)(Q+Ã

+
1 :j

2
2 :G2 )(x)(Q

+Ã+
1 :j

2
2 :G2 )(y) (2.70)

f2(x, y) —
1
4N
[Q+H̃−11 Q]

−1
xy (2.71)

F2 is again small and marginal, and we neglect F2 as the first approxima-
tion. The analysis of H̃1, H

−1
1 , Ã2 and H

−1
2 is similar and straightforward,

and is left to the reader. (See next section.)

3. THE MAIN PART OF THE RECURSION FORMULA

3.1. The Main Recursion Formula

We now discuss the approximate renormalization group flow. The
point is that the large coefficient Gn ’ bn in Mn becomes the coefficient of
the zero-average fluctuation fields Qk̃n and the coefficient of the block spin
kn+1 of next order is O(1). This means the following:

Fact 1. The inner product jn+1(x) zn(x) in O :j2n : , ÃnknP must be
small, namely the fluctuations tn parallel to fn+1 are small,

Fact 2. As a result of the above, the integral by Qk̃n yields small
terms which may be neglected, and the coefficient carried by kn+1 is O(1)
and then the integral by kn+1 still has an effect of order O(1).

Thus the main part of the recursion formula is obtained by the following
simplifications:

[A1] discard small marginal term OQ+Ã+
n−1Jn, [Q

+H̃n−1Q]−1 Q+

Ã+
n−1JnP which arises by the integration by dk̃n,
[A2] discard the subtracted determinant det−N/23 (1+iKn), Kn=

2Tn(Ãnkn)/`N since N(TrK
k
n) (k \ 3) are small and irrelevant (irrelevant

means that these terms disappear if we iterate the block spin transformations),
[A3] discard terms (e.g., dH̃n, etc.) which are marginal and small.

(Some notation are defined below.) They are all of order O(b−1) or
O(N−1). We also neglect large field contributions. This problem will be
discussed in the forthcoming paper. (13)

Then neglecting all marginal terms, onKn, we have

Wn(fn, kn)=
1
2 Ofn, G

−1
n fnP+Okn, H

−1
n knP−iOJn, ÃnknP (3.1)
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and we easily see that the kernels satisfy the following recursion relations if
we neglect small non-local terms:

Jn(fn)=Jn−1(Anfn)−`NTn−1=`N 1b− C
n−1

i=0
Ti−

1
N

j2n 2 (3.2a)

H̃−1n−1=H
−1
n−1+Ã+

n−1Mn−1Ãn−1

Mn−1=T°2n−1+2Tn−1 p Gn=G°2n−1−Gn°2 (3.2b)

Hn=CŒH̃n−1(CŒ)+=CŒ{H
−1
n−1+Ã+

n−1Mn−1Ãn−1}−1 (CŒ)+

Ãn=H̃n−1(CŒ)+H
−1
n (3.2c)

Ãn=Ã1 · · · Ãn (3.2d)

with H−10 =0 and G0=(−D+m2)−1, where we have used

Gn=An+1Gn+1A
+
n+1+QCnQ+, Gn=Gn+1+Tn (3.3)

These relations may look quite complicated, but one of the roles
of the recursion formulas for Ãn and H̃n is an approximate derivation of
Ok(x) k(y)P through the multiscale decompositions of G°2:

G°2=C
.

n=0
(Gn°2−G°2n+1)=C

.

n=0
Mn (3.4)

Before solving these recursion formulas, we note that Gn(x, y) depends
only on x−y. Then An(x, y) depends only on x−Lny, x ¥ L, y ¥ Ln and is
invariant by the simultaneous shifts xQ x+Lnem, yQ y+em where em=
{(1, 0), (0, 1)}. Then Gn(x, y) is invariant for xQ x+emLn and yQ y+
emLn. This is also the case for Tn−1=Gn−1−Gn and Mn−1. This means that
H̃−10 (x, y) is invariant for xQ emL and yQ emL and then H1(x, y) depends
only on x−y. Then by induction, we see that Hn(x, y) depends only on
x−y and Ãn(x, y) depends only on x−Lny. We also note that ;y Gn(x, y)
and ;y Gn°2(x, y) are independent of x. Then we see that ;y An(x, y),
;y Ãn(x, y) and ;y Mn(x, y) are all independent of x ¥ L.

3.2. Solving the Recursion Formula

The properties ofAn,Tn andGn are well known, and we study Ãn andHn.
Since

(CnAn)(x, y)=((CŒ)n Ãn)(x, y)=dx, y, x, y ¥ Ln (3.5)
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andAn and Ãn decrease exponentially fast, we expect

An(x, y)=(A1 · · ·An)(x, y) ’ d[ x
Ln
], y

Ãn(x, y)=(Ã1 · · · Ãn)(x, y) ’ L−2nd[ x
Ln
], y

where [x/Ln] ¥ L is the lattice point nearest from x/Ln. These properties
show that these operators are nearly diagonal. But this is not quite so, and
An(x, y) has a rather long tail around const. Ln. The following two
theorems mean that Ãn has no tail for large bn.

Theorem 3. The transformation matrix Ãn(x, y) is the function of
x−Ly only (x ¥ Ln−1, y ¥ Ln) and almost diagonal for bn ± L2:

Ãn(x, y)=
1
L2

d[x/L], y+
1
bn

dÃn(x, y)

|dÃn(x, y)| [ O 1exp 5−c :
x
L
−y :62

where bn=Gn(x, x), c=O(1) is a constant independent of L and b,

C
y ¥ Ln

dÃn(x, y)=0, C
z ¥iLx

dÃn(z, y)=0 (3.6)

and iLx is the square of size L×L center at Lx ¥ L. The Hamiltonian
kernel H−1n of kn is strictly positive and bounded from below and above
uniformly in b:

|H−1n (x, y)| < const. exp[−c |x−y|] (3.7)

where c is a positive constant independent of L and b. H−1n (x, y) depends
only on x−y.

Theorem 4. The transformation matrix Ãn(x, y) is the function of
x−Lny only, almost diagonal and has tail but the tail becomes small as bn
becomes large compared with L2:

Ãn(x, y)=
1
L2n

d[ x
Ln
], y+

1
bnL2(n−1)

dÃn(x, y) (3.8a)

|dÃn(x, y)| < const. exp 5−c :
x
Ln
−y :6 (3.8b)
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where c is a positive constant independent of L and b. Furthermore

C
y ¥ Ln

dÃn(x, y)=0, C
z ¥i

n
Lnx

dÃn(z, y)=0 (3.9)

wherein
Lnx is the square of size L

n×Ln center at Lnx ¥ L, x ¥ Ln.

Remark 4. We can say that these theorems yield an alternative of the
multiscale decomposition of (G°2)−1. ThoughG(x, y) ’ b−(2p)−1 log(|x−y|)
is of long-range, G−1 is of short range: G−1(x, y)=(−D+m2)(x, y)=0 unless
|x−y| [ 1. Sincek=;.

n=0 ÃnQk̃n, Theorem 4means that

Ok(x) k(y)P ’ C
.

n=0

1ÃnQ
1

2Q+H̃−1n Q
Q+Ã+

n
2 (x, y) ’ 1

b(x, y) |x−y|4

(3.10)

for |x−y| < m−1, where b(x, y)=bn for x, y such that Ln [ |x−y| < Ln+1.
(3.10) is close to [G°2]−1 (x, y) but is slightly different. The explicit cal-
culation of [G°2]−1 is given in Appendix A. We believe that our multiscale
calculation (3.10) is a better approximation for Ok(x) k(y)P, but the
investigation remains.

Theorem 4 may be regarded as a generalization of the following
equality obtained by the standard contour integral, where zi ¥ R2 and
z0=y, zn+1=x (see Appendix D for proof):

F exp 1−a C
n

i=0

:zi+1
L
−zi : 2 D

n

i=1
d2zi

=12p
a2
2n 11+O 1 1

L
22 exp 1−a : x

Ln+1
−y : 2 (3.11)

We prove these theorems simultaneously by induction.

(Step 1). Some properties (dependence on x, y, etc.) of Ãn(x, y) and
Hn(x, y) are already established. We note that ;y Gn(x, y), ;y ¥ L Gn°2(x, y)
and

C
y ¥ L
Mn(x, y) — C

y ¥ L
(Gn°2−G°2n+1)(x, y)
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are constants independent of x (n=0, 1,...). Let P0 be the projection onto
the set of block-wise constant functions, and set P1=1−P0, see (2.38).
Then

C
y ¥ L1

(P1M0P0)(x, Ly)= C
y ¥ L1

[P1(G0°2−G1°2) P0](x, Ly)=0 (3.12)

For later use, we set di=L2C+=(CŒ)+, namely we define di by
di(x, y)=d[x/L], y, x ¥ Ln−1, y ¥ Ln. LetM be a map RLn Q QRLn−1 0LLn such
that |M(x, y)| [ exp[−c |x/L−y|], c=O(1) > 0 and M(x, y) depends
only on x−Ly (;y M(x, y) is independent of x). Then it follows that
;y M(x, y)=0. Let us consider the following sum

C
z ¥i

k
Lky

M(x, z)= C
z ¥i

k
M(x, Lky+z)=(Mdki)(x, y) (3.13)

where ik is the square of size Lk×Lk center at the origin. Since
; z M(x, z)=0, we have

(Mdki)(x, y)=− C
z ¥ (ikLky)

c

M(x, z) (3.14)

Thus for both cases of x ¥ik
Lky and x ¨i

k
Lky, we have

: C
z ¥i

k
M(x, Lky+z) :=|(Mdki)(x, y)| [ c1 exp 5−c dist 1

x
L
, “ik

Lky
26

(3.15)

where “ik
Lky … L1 is the boundary of the squarei

k
Lky. Then

dist 1 x
L
, “ik

Lky
2 \Maxi=1, 2 3 :

xi
L
−Lk 1 yi±

1
2
2 :4

|(dn−ki Mdki)(x, y)| [ O(1) exp 5−c dist 15
Lkx
Ln
6 , “ik

Lky
26

(3.16)

If |xL−n−y| > O(1), x ¥ L, y ¥ Ln, then |(d
n−k
i Mdki)(x, y)| decreases

rapidly. More generally, we prove in Appendix B (Lemma B.2) that

|(Mdki)(x, y)| [ O(L
−k) exp[−cŒ |x/L−Lky|] (3.17)

where 0 < cŒ ’ c. Intuitively speaking, M(x, y) is averaged by y and tends
to a constant (=0 this case) independent of x as kQ..
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(Step 2). We substitute Ãn into H̃
−1
n and obtain

H̃−1n =H
−1
n +2bn+1QCnQ++Cn[Tn°2+2Tn p (Gn+1−bn+1)](C+)n

+
2bn+1

bnL2(n−1)
[CnTndÃn+dÃ+

nTn(C
+)n]

+
1

bnL2(n−1)
[Cn(Tn°2+2Tn p (Gn+1−bn+1)) dÃn+(h.c.)]

+
1

b2nL
4(n−1) dÃ+

nMdÃn (3.18)

where we put Gn+1=bn+1+(Gn+1−bn+1) and used

(Ã+
nAn)(x, y)=dx, y+C

z

1
bnL2(n−1)

dÃn(z, x)An(z, y) (3.19)

The operator [Cn(Tn p (Gn+1−bn+1))(C+)n](x, y) is bounded uniformly in
b and decreases like O(exp[−|x−y|]) since |Gn+1(x, y)−bn+1 | < O(1) for
|x−y| < m−1. The term in the second line in (3.18) contains dÃn and is order of
O(1). This is written

2bn+1
bnL2(n−1)

[CnTndÃn+dÃ+
nTn(C

+)n]

=
2bn+1

bnL2(n−1)
[QCnQ+A

+
n dÃn+dÃ+

nAnQCnQ+] (3.20)

Let P0 be the projection operator onto the set of block-wise constant func-
tions, and put P1=1−P0, see Eq. (2.38). Let E=H̃

−1
n and set Eij=PiEPj.

Then we have

E00=P0[H
−1
n +C

n[Tn°2+2Tn p (Gn+1−bn+1)](C+)n+O(b
−1
n )] P0

E11=P1[2bn+1QCnQ++O(1)+O(b
−1
n )] P1,

E10=P1[H
−1
n +C

n[Tn°2+2Tn p (Gn+1−bn+1)](C+)n] P0

+P1 5
2bn+1

bnL2(n−1)
QCnQ+A

+
n dÃn+O(b

−1
n )6 P0
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and H̃n={H̃ij} where

H̃00=(E00−E01E
−1
11 E10)

−1, H̃10=−E
−1
11 E10H̃00

H̃11=(E11−E10E
−1
00 E01)

−1, H̃01=−E
−1
00 E01H̃11

Therefore we have

Ãn+1(x, y)=
1
L2

d[x/L], y−1
1
E11
E10C+2 (x, y) (3.21)

Hn+1=CŒ
1

E00−E01E
−1
11 E10

CŒ+ (3.22)

(Step 3). From (3.21), we have the recursion formula

dÃn+1=−bn+1
1
E11
E10C+— Dn+1+(bn+1+e (1)n ) dÃnC+ (3.23)

where

Dn+1=Bn+1+e (0)n (3.24a)

Bn+1 — −
bn+1

E11
P1[H

−1
n +C

n[Tn°2+2Tn p (Gn+1−bn+1)](C+)n] C+ (3.24b)

bn+1 — −
2b2n+1

bnL2(n−1)E11
P1QCnQ+A

+
n (3.24c)

e (0)n — −
bn+1

bnL2(n−1)E11
P1[Cn[Tn°2+2Tn p (Gn+1−bn+1)](C+)n] C+ (3.24d)

e (1)n — −
bn+1

b2nL
4(n−1)E11

P1dÃ
+
nMn (3.24e)

and then

Bn+1=−11+O 1
1

bn+1
22 1
2P1QCnQ+P1

×P1(H
−1
n +C

n[Tn°2+2Tn p (Gn+1−bn+1)](C+)n) C+

bn+1=−
bn+1

bnL2(n−1)
11+O 1 1

bn+1
22 1
P1QCnQ+P1

P1QCnQ+A
+
n

=−
bn+1

bnL2(n−1)
11+O 1 1

bn+1
22 P1A+

n .
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sinceP0C+=C+andQ+=Q+P1. Note that [CnTn°2(C+)n](x, y) and [CnTn p
(Gn+1−bn+1)(C+)n](x, y) in Dn+1 are bounded by exp[−O(1/L) |x−y|].
Similarly from the definition of Ãn+1, we have

dÃn+1=
bn+1

bn
dÃndi+1dni+

L2

bn
dÃn 2 dÃn+1 (3.25)

Then from (3.23) and (3.25), we obtain the recursion relations for {dÃn}:

dÃn+1=dniDn+1+yndÃndi+fn(dÃn) (3.26)

where

yn=
bn+1

bn
+
1
L2

dnibn+1=
bn+1

bn
11− 1

L2n
dniP1A

+
n
2+y −n (3.27)

y −n=O(b
−1
n ) ’

1
bnLn

dni
1

QCnQ+
O(1) P1A

+
n (3.28)

fn(dÃn)=
L2

bn
dÃnDn+1+51dni+

L2

bn
dÃn 2 e (1)n +

1
bn

dÃnbn+16 dÃndi (3.29)

Then fn(dÃn)=O(b
−1
n ) satisfies ;y fn(dÃn)(x, y)=0. Thus, from (3.26)

we have

dÃn+1=Xn+fn(dÃn)+ynfn−1(dÃn−1) di+·· ·+yn · · · y2f1(dÃ1) dni

(3.30)

Xn=yn · · · y1dÃ1d
n
i+dniDn+1+ynd

n−1
i Dndi · · ·+yn · · · y2diD2d

n−1
i

(3.31)

(Step 4). Thus if |x/Ln−y| > O(1), then (3.16) can be applied to the
right hand sides, and we complete the proof. We first note bn+1/bn < 1,
and set

o (0)n =
1
L2n

dniP0A
+
n , o (1)n =1−

1
L2n

dniA
+
n (3.32)

so that yn=
bn+1
bn
(o (0)n +o (1)n )+y −n. Then using the definition A+

n=G
−1
n C

nG0
and P0=L2C+C, we can easily confirm the following relations:

o (i)n o (j)n =dijo
(i)
n , o (i)n o (j)n−1=dijo

(i)
n o (i)n−1, i, j=0, 1 (3.33)

o (0)m o (1)n =0, o (1)m o (1)n =o (1)n , for m > n (3.34)
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Thus we have

ynyn−1 · · · yk=
bn+1

bk
[o (0)n · · ·o

(0)
k +o (1)k ]+(terms containing yŒ) (3.35)

where

o (0)n · · ·o
(0)
k =dn+1i C

n−k+1 1
L2k

A+
k (3.36)

o (1)k dk−1i =dk−1i (1−C
+G−1n CGn−1) (3.37)

and then the product o (0)n · · ·o
(0)
k yields L

−2(n−k+1). Another factor o (1)k dk−1i

acts on

(Dkd
n+1−k
i )(x, y)= C

z ¥i
n+1−k

Dk(x, Ln+1−ky+z), x ¥ Lk, y ¥ Ln

which is slowly varying since the right hand side contains

C
z ¥i

n+1−k
exp[ipz]=D

2

i=1

sin(Ln+1−kpi/2)
sin(pi/2)

o (1)k dk−1i C
+=0 means that o (1)k dk−1i =0 on the set of (block-wise) constant

functions (block size is L×L). Then by (3.17), we have

(1−C+G−1n CGn−1)(Dkd
n+1−k
i )=O(L−(n+1−k)) (3.38)

The terms containing y −k are convergent and small.
Thus Xn is bounded uniformly in n if bn ’ b−(log Ln)/2p ± L2. The

main term in Xn is dniDn+1. We choose bn > > L2 so that fn(dÃn) are of
order O(b−1n ). Since fn(dÃn) satisfies (3.17), we choose L so large that
dÃndi is sufficiently small getting the factor of order O(L−1):

dÃn+1=Xn+min 3O(L−1),
L2

bn
4 O(dÃn) (3.39)

The remaining properties of dÃn+1 and H
−1
n+1 are clear from the expression

of dÃn+1. Q.E.D.

4. APPROXIMATE FLOW OF THE RG

The renormalization group flow can be obtained from these recursion
formulas with the help of Theorem 4. The formulas for Jn and Gn are
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closed and then solved directly by (3.3) since b=G0(x, x)=G0(x, x). Thus
Jn is explicitly obtained:

Jn(x)=`N 5Gn(x, x)−
j2n(x)
N
6=− 1

`N
:j2n(x):Gn (4.1)

Since G0(x) ’ b−(2p)−1 log(1+|x|) for |x| < m−1 and G0(x) ’
c1 exp[−c2m |x|] for |x| > m−1 (c1 and c2 ’ 1 are positive constants), we see

1. Gn(x, y) ’ b−(2p)−1 log Ln(1+|x−y|), if Ln |x−y| < m−1

2. Gn(x, y) ’ L−2nm−2dxy, if Lnm > 1

and then we have

Gn(x, x) ’ bn — ˛
b−n(2p)−1 log L, if Lnm° 1
L−2nm−2, if Lnm > 1

(4.2)

We can regard this quantity as the average of the field j2n/N ’ f2n/N, as is
seen by the integration over kn. Thus we can regard this as the approximate
flow of the renormalization group of the model.
The flow (4.2) of bn is realized not only in the hierarchical model of

Dyson–Wilson type but also in the hierarchical model of Gallavotti type.
(This type of flow of bn is obtained in most of reasonable approximative
calculations of the two-dimensional O(N) spin model.)
How about the effective interactions? To see it, we need Theorems 3

and 4 which mean that Ãn ’ L−nd[x/Ln], y and Hn(x, y) ’ dx, y:

H−1n+1(x, y) — [CŒH̃nCŒ
+]−1 (x, y) ’ const. dx, y (4.3)

i

`N
O:j2n :, ÃnknP ’

i

`N
O:f2n :, knP (4.4)

This means that the integration over kn yields the double well potential

Vn ’
1
N
(f2n(x)−Nbn)2 ’ b(|fn(x)|−(Nbn)1/2)2 (4.5)

But we have to mention that this may have to be taken with a grain of salt
since this integration is justified for small |:j2n :| since we must assume that
|k| < N1/2 to expand the determinant. Even so, this means that the parallel
component of the fluctuation field tn must be small, and thus we expect
that the constraint of type (2.52a) is reproduced. This flow is close to that
of the hierarchical model of Dyson–Wilson type (4, 8, 12, 19) with large N.
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5. CONCLUSION

In this paper, we have shown that the system is close to that described
by the hierarchical model advocated by Wilson. (19) The reason for this is
that the auxiliary fields kn can be sharply decomposed into the block spins
kn+1 and the fluctuations k̃n when bn > L2. This reflects the fact that the
spin fluctuation fields tn(x) are almost orthogonal to the block spins
fn+1(x). An immediate consequence from this is that |:f

2
n(x):Gn | must be

small on Kn, which will be used in our forthcoming paper. (12) Another
consequence is that the main contribution of the k integral comes from
|k| < const.b−1/2 since the main contribution comes from |k̃n(x)| < b−1/2n and

|k(x)|=:C
n
(ÃnQk̃n)(x) : ’C

1
L2n

b−1/2n

Thus, we expect that corrections to the correlation length t ’ m−1 ’ e2pb

are small.
The effective interaction termVn is calculated in some hierarchical models.

The hierarchicalmodel approximation advocated byGallavotti(6, 9) yields

1
4Nbn

(f2n(x)−Nbn)2 ’ (|fn(x)|−(Nbn)1/2)2 (5.1)

which should be compared with (4.5).

Remark 5. The hierarchical model of Dyson–Wilson type (4, 19) is
obtained by replacing spin variables {f(x); x ¥ I} in a block I by of1(xI)±z
where f1(xI) is the block spin (average of spins) on I, ±z are zero-average
fluctuations in I and o is a suitable factor. On the other hand, the hierar-
chical model of Gallavotti type (9, 6) is obtained by replacing spin variables
{f(x); x ¥ I} by of1(xI)+z. In both approximations, the variable z is a
Gaussian random variable localized in I, but in the latter approximation,
the sum of the fluctuations z is not zero. Since we have used the block-spin
transformation of Kadanoff–Wilson type in which the sum of the fluctua-
tions is zero, it may be natural that we have obtained the flow of Dyson–
Wilson type.

APPENDIX A. INVERSE OF G°2

Set G̃(p)=[m2+2; (1− cos pi)]−1. Then the Fourier transform T(p)
of G°2 is given by

T(p)=F G̃(k) G̃(p−k)
d2k
(2p)2

848 Ito



where k ¥ [−p, p]2 — I. We are interested in p such that m−1° |p|=O(1)
[ p. Set I0={k ¥ I; |k| < |p|/2}, I1={k ¥ I; |p−k| < |p|/2} and IŒ=I0
(I0 2 I1), and let T0, T1 and TŒ be the contributions to T from the regions I0,
I1 and IŒ, respectively. Obviously TŒ, the contribution from IŒ is less than
[m2+2; (1− cos(pi/2))]−1=O(1) since both |k| and |p−k| are larger
than |p/2|. On the other hand, using log m2=−4pb+O(1), we have

T0(p)=F
I0

1
[m2+2; (1− cos ki)][m2+2; (1− cos(pi−ki))]

d2k
(2p)2

=
b

[m2+2; (1− cos pi)]
T̃0(p) (A1)

where T̃0(p) ’ 1 is a slowly varying even function of p defined in the
obvious way. Thus

T(p)−1=
m2+2; (1− cos pi)

2b
3 1
T̃0(p)

+O(b−1)4 (A2)

On the lattice space, ; 2(1− cos pi) is the lattice Laplacian, and [T̃0]−1
becomes a function which decreases like O(|x−y|−2) on Z2. Then the
conclusion follows. (This is an outline of the calculation, and the remaining
part is left to the treader.)

APPENDIX B. RENORMALIZATION GROUP ANALYSIS

We here briefly sketch the block-spin procedure following Gawedzki
and Kupiainen in the form applied to the present system. (7) The boson field
{fn(x); x ¥ Ln} is written in terms of spin variables {fn+1} of next distance
scale and fluctuation fields {tn(x); x ¥ Ln 0LLn+1}:

fn(x)=(An+1fn+1)(x)+(Qtn)(x) (B1)

where An+1: RLn+1 Q RLn is given by

An+1(x, y)=(GnC+G
−1
n+1)(x, y) (B2)

Substituting these, we find

Ofn, G
−1
n fnP=Ofn+1, G

−1
n+1fn+1P+Otn, Q+G

−1
n QtnP (B3)
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Thus {tn(x); x ¥ Ln 0LLn+1} are Gaussian random variables of zero mean
and covariance Cn, where

Cn(x, y)=(Q+G
−1
n Q)

−1=R(Gn−GnC+G
−1
n+1CGn) R

+ (B4)

with R being the projection RLQ RL0LL1. Cn(x, y) decays exponentially fast
no matter how small m is. In fact for n=0

(G0−G0C+G
−1
1 CG0)(x, y)

=F
d2p
(2p)2
5G̃0(p)−G̃0(p)

G̃−11 (Lp)
L2

G̃0(p) h2(p)6 e ip(x−y) (B5)

where

G̃0(p)=5m2+2 C (1− cos pi)6
−1

(B6a)

G̃1(p)= C
(L−1)/2

ki=−(L−1)/2
G̃0 1
p+2pk
L
2 h2 1p+2pk

L
2 (B6b)

h(p)=D
i

sin(Lpi/2)
L sin(pi/2)

(B6c)

In (B5), the function inside of [ · · · ] is analytic in |Im pi | < O(1/L)
and the singularity of G̃0(p) at p2=−m2 is canceled. Thus C0 has uniform
exponential decay with decay rate O(1/L). This is same for n \ 2:

|Cn(x, y)| [ c0 exp[−c |x−y|], c=O(1/L), x, y ¥ Ln (B7)

We conversely have

G0(x, y)=C
.

n=0
Tn(x, y), Tn=AnQCnQ+A

+
n (B8)

where

An(x, y) — A1 · · ·An(x, y)=G0(C+)n G
−1
n (x, y) (B9)

and x ¥ L (lattice width=1), y ¥ Ln (lattice width=1) and A0=1. (This
notation is different from that in ref. 8 where the first argument x in
An(x, y) stands for the point in L−nL.)
Obviously fn has the mass mn=Lnm by the dimensional reason, and

we have shown that tn has the mass square of order O(L−1)+m
2
n \ O(1).
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One easily finds that A1(x, y)=A1(x, y) is given by

C
(L−1)/2

ki=−(L−1)/2
F
d2p
(2p)2

exp 5ip 1 x
L
−y2+2ipkx

L
6

×h 1p+2pk
L
2 1
L2
G̃0 1
p+2pk
L
2 G̃−11 (p) (B10)

andAn(x, y) is obtained by replacing L by Ln. The sum over (k1, k2) comes
from the change of the variable pi ¥ (−p, p)Q (pi+2pki)/L, ki=0,
±1,..., ±(L−1)/2. The function L2G̃−10 [(p+2pk)/L] G̃

−1
1 (p) is analytic

and bounded in the strip region |Im pi | < O(1/L) and the singularity at
p=0 is again absent. The sum over k is absolutely convergent and the first
small k i’s are enough for the estimate.

Lemma B.1. The following bounds hold:

|An(z, x)| [O(1) exp 5−c :
z

Ln
−x :6 (B11a)

|An(z, x)−An(t, x)| [O(1)
|z−t|
Ln
1exp 5−c : z

Ln
−x :6+exp 5−c : t

Ln
−x :62

(B11b)

|Tn(x, y)| [O(1) exp 5−
c
Ln+1

|x−y|6 (B11c)

|Tn(x, y)−Tn(xŒ, y)| [O(1)
|x−xŒ|
Ln
1exp 5− c

Ln+1
|x−y|6

+exp 5− c
Ln+1

|xŒ−y|62 (B11d)

where z, t ¥ L, x, y ¥ Ln in the first, second equations and x, xŒ, y ¥ L in the
third and the final equations. The constants cŒs in these equations are chosen
independent of L.

Lemma B.2. Let M(x, y)=(1−D)−1 (x, y) and put (Mdi)(x, y1) —
;t ¥i M(x, Ly1+t). Then

|(Mdi)(x+em, y1)−(Mdi)(x, y1)| [
c1
L
exp[−c2 |x−Ly|] (B12)

where ci > 0 are constants independent of L.

Renormalization Group Recursion Formulas 851



Lemma B.1 is more or less clear from our arguments and is well known.
See also ref. 7. Then we prove Lemma B.2 which can be extended to the
form used in the proofs of Theorems 3 and 4. Note that

(Mdi)(x, y1)=F exp[ipL(x1−y1)]
e ipzL2h(p)

1+2; (1−cos pi)
D
dpi
2p

(B13)

=C
k
F exp[ip(x1−y1)]

exp 5i p+2pk
L

z6

1+2C 11−cos pi+2pki
L
2

×h 1p+2pk
L
2D dpi

2p

h 1p+2pk
L
2=D

2

i=1

(−1)ki sin pi/2
L sin(pi+2pki)/2L

’ (−1) ; ki D
2

i=1

2 sin pi/2
pi+2pki

(B14)

where x=Lx1+z and the variables pi in (B13) are replaced by (pi+
2pki)/L with |pi | [ p and ki=0, ±1,..., ±(L−1)/2. It is enough to bound
(B13) for x1=y1. Then we can replace (B14) by <2

i=1 (4p
2k2i+1)

−1 by the
symmetry pi Q ±pi. The denominator of (B13) is bounded from below by 1
and the derivative by xm (i.e., by zm) yields exp[i(pm+2pkm)/L]−1. Then we
use km Q ±km to see that the derivative of (B13) is of order O(1/L). (The
sum over ki converges and then the contributions from small |k| dominate.)

APPENDIX C. EXPLICIT FORM OFA2N

Here we construct Ã1 explicitly. The construction of Ãn is similar. For
M0 —T0°2+2T0 p G1, we putMij — PiM0Pj so that

M0 — R
M00M01

M10M11

S, H̃0 —M
−1
0 — RH̃00H̃01

H̃10H̃11
S (C1)

namely

H̃00=(M00−M01M
−1
11M10)−1, H̃10=−M

−1
11M10H̃00

H̃11=(M11−M10M
−1
00M01)−1, H̃01=−M

−1
00M01H̃11

Since PiT0P0=0 and G1(x, y)−b1=O(1) for |x−y|°m−1, we know that

(1) P0(T0 p G1) P0 is a positive operator bounded by a constant uni-
formly in b,
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(2) P1(T0 p G1) P1 is a positive operator bounded from below byO(b).
(3) P1(T0 p G1) P0 is an operator whose norm is bounded by O(1).

Put m=CM0C+, namely put

m00(x1, y1)=
1
L4

C
z, t
M0(Lx1+z, Ly1+t)

and let e=(1,..., 1)/`L2. Then |e|=1, (e, Qy)=0 for any y ¥ RL0L1 and

M00(x, y)=L2m00([x/L], [y/L]) p (|ePOe|),

M−1
00 (x, y)=L

−2m−100 ([x/L], [y/L]) p (|ePOe|)

Similar expressions also hold for H̃00 and we have

M−1
00 CŒ

+(CŒM−1
00 CŒ

+)−1=H̃00CŒ+(CŒH̃00CŒ+)−1=
1
L2

d[x/L], y

Therefore

H1=CŒH̃0CŒ+=R
CŒH̃00CŒ+ 0
0 0
S (C2)

andwe see that (Ã1)(x, y)=H̃0CŒ+H
−1
1 (x, y)with x ¥ L and y ¥ L1 is given by

(Ã1)(x, y)=
1
L2

d[x/L], y−(M
−1
11M10)(x, Ly)

=
1
L2

d[x/L], y−(M
−1
11M10C+)(x, y) (C3)

Let us consider the second factor of Ã1. Since M11(x, y)=
(1−P0) M0(1−P0)=Q+M0Q on QRL0LL1, we have

M−1
11 (x, y)=(Q

+M0Q)−1 ’ (2bQ+QC0Q+Q)−1 (C4)

on QRL0LL1. Therefore

M−1
11 ’ (2bQ+QC0Q+Q)−1=

1
2b
(Q+Q)−1 [Q+(−D+m2) Q](Q+Q)−1

(C5)

where (Q+Q)−1: RL0LL1 Q RL0LL1 is given by (Q+Q)−1=1−P+ 1
L2 P with P

being the projection onto the set of the block-wise (iLx 0{Lx}) constant
functions. Thus we obtain
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(Q+QC0Q+Q)
−1
xy=(−D+m2)x, y+

1
L2
(d|Lx1 −y|, 1+d|Ly1 −x|, 1)−11−

1
L2
2

×[P(−D+m2)+(−D+m2) P]xy+dLxy (C6a)

|dL(x, y)|=11− 1
L2
22 [P(−D+m2) P]xy

+14+m
2

L4
−

8
L2(L2−1)

+
2
L6
2 dx1, y1 (C6b)

where x, y ¥ L0LL1 and x1 — [x/L] ¥ L1. To rewrite this as the map from
QRL0LL1 into QRL0LL1, we multiply Q to the left and Q+ to the right.

APPENDIX D. SOME INTEGRALS

We first consider the one dimensional case. Using

exp[−a |x|]=F
2ae ipx

p2+a2
dp
2p

we have

F exp 1 −a C
n

i=0

:ti+1
L
−ti : 2D

n

1
dti

=(2a)n+1 F exp 5ip 1 x
Ln+1

−y26 1D
n

k=0

L2k

p2+a2L2k
2 dp
2p

(D1)

Then if x/Ln+1−y > 0, the contributions come from the n+1 poles p=
iLka, k=0, 1,..., n. The contribution from p=ia gives the dominant part
and the sum of other contributions converges (even if y=x/Ln+1) and is
less than that. Then we have the formula

RHS of Eq. (D1)=11+O 1 1
L
22 (2a)n+1 exp 5−a : x

Ln+1
−y :6

×1 1
2a ·a2n

D
n

k=1

L2k

L2k−1
2

=11+O 1 1
L
22 12

a
2n exp 5−a : x

Ln+1
−y :6
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We note that contribution from the residue p=iaLk get the additional
multiplicative factor of order O(L−k). In the two dimensional case, we use
the identity

exp[−a |x|]=2pa F
e ipx

(p2+a2)3/2
d2p
(2p)2

Then (3.11) follows from this in the same way.
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